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Optical phonon modes in a double heterostructure of polar crystals

R. Chen, D. L. Lin and Thomas F. George
Department of Physics and Astronomy

State University of New York at Buffalo
Buffalo, New York 14260

Abstract

The equation of motion for the polarization vector for a

double heterostructure of polar cry. tals is solved exactly within the

framework of the continuum model. There exist only two types of phonon

modes, the interface modes and the confined bulk modes, whose eigenvectors

are obtained explicitly. Dispersion relations are derived analytically for

the interface modes, while the confined bulk modes are dispersionless, a

fact consistent with the model. It is also found that in Raman scattering

experiments, the symmetric interface modes are predominantly longitudinal

(LO) and the antisymmetric interface modes transversal (TO). In the central

region of the Brillouin zone, however, they both split into two branches

oscillating at LO and TO frequencies, respectively. Possible

reinterpretation of various experiments are briefly discussed.

1988 PACS Nos.: 63.20.Dj, 68.35.Ja, 78.65.Fa, 78.65.Gb



I. Introduction

There has been great interest in recent years in the study of various

vibrational modes supported by semiconductor heterostructures. The patterns

of normal modes of vibrations that determine the electronic properties in

such structures are evidently different from those in the bulk. The

presence of interfaces necessarily alters the phonon modes, and possibly

even their interaction with electrons may be modified because of the reduced

dimensionality.

Experimental investigations of the spectra of possible acoustic modes

supelattces1-4
in superlattices have shown fairly-good agreement with theory. On the

other hand, the longitudinal optical (LO) modes in polar crystals are much

less well understood in these contexts. In all the calculations such as

5-7 8
free-carrier absorption of light, scattering rates and polaronic

9
effects, etc. , the .isual bulk Frolich Hamiltonian is assumed for the

electron-phonon interaction in confined systems. The only requirements are

that the material elastic properties match at the interfaces and that the

dielectric properties are equal. MoT L~rently, the surface optical (SO)

mode has been included in the treatment or - olarons confined in a slab1 0 or

near the interface in semi-infinite systems. I11 12 For these surface and

interface situations, the bulk Fr6lich Hamiltonian is still employed for

treating the LO-phonon contribution.

On the other hand, evidences of confined modes peculiar to different

types of layered structures nave been noticed in various experiments.

Measurements of magneto-absorption and cyclotron resonance in GaInAs/InP

13 14
superlattices and GaAs/GaAlAs heterostructures indicate that the

electron-LO-phonon interaction in these structures can be fundamentally

different from that in the bulk case. In a numerical study of possible



modes of the optical phonon in layered polar crystals, it is found that

phonon modes tend to be confined in each layer and that the penetration of

vibrations into the adjacent layer is negligible.1 5' 1 6  Moreover, the

existence of confined phonon modes has been directly observed in a GaAs

single quantum well of GaAs/GaAIAs heterostructures.1
7

In theoretical investigations of the vibrational modes in an ionic

18
slab, Fuchs and Kliewer have found the bulk LO mode with the nodes at the

surfaces as well as the SO modes of different symmetries. Interface modes

have been derived by Wendler 19 by considering the polarization field in a

20
double layer system, and by Lassnig using the energy-loss method in a

double heterostructure (DHS) of polar sericonductors. An alternative

treatment 2 1 of the DHS predicts some peculiar phonon modes that have not

been borne out by observation.

In this article we present solutions for optical phonon modes in a

22
semiconductor DHS using the continuum model of Born and Huang. The method

of solution has been developed by various authors. 18 '1 9 '2 3 Apart from the

long-wavelength limit in the model, no further approximation is made

throughout our calculation. Dispersion relations and eigenvectors for all

the normal modes of lattice vibration are derived analytically. It is found

that there exist two types of phonon modes, the interface modes and confined

bulk modes.

While the existence of interface modes has been well recognized

experimentally, 2 4 '2 5 their eigenvectors and dispersion relations in a DHS

are solved explicitly for the first time in this paper. Our results show

that either the symmetric or the antisymmetric interface modes has two -n'___

branches. Their frequencies at the center of the Brillouin zone are exactly

on/
the same as those of the bulk LO and TO phonon in each material.

A,'iL ana/or
Dst polt[



Experiwental evidence of confined bulk modes has recently been

reported. 17 25,26 We find that both the bulk LO and transverse optical (TO)

modes are strictly confined. Further investigation on implications of such

confinements is being carried out and will be reported elsewhere.

In Sec. II, we outline the procedure for deriving the equation of

motion for the polarization vector. The coupled integral equations are

solved for the interface modes in Sec. III and the confined bulk modes in

Sec. IV. Consequences and implications of our results are discussed in Sec.

V.

i. Equation of motion of the polarization field

Consider a DHS of two different polar crystals as shown in Fig. i. A

layer of material 1 with thickness a is sandwiched between two thick layers

of material 2. We take tne z-axis to be perpendicular to the interfaces

which are located at z - 0 and z - a, respectively. Following Born and

Huang, 2 2 we start in the continuum approximation with the equation of motion

for the relative displacement u(r,t) of the ion pair in material v (v =

1,2),

-X- 2-.",t e*E(r,t) ,(I)

vU (r't) -" "vo U (r~t +

2

where is the reduced mass of the pair of ions, uw is the short-range

force constant not including Coulomb fields, E(r,t) is the local electric

field, and e* is the effective charge of the ions. The subscript v labels

the material considered. The oscillating ions produce a polarization field

P(r,t) given by



P(r,t) = n e*u(r,t) + n a E(r,t) (2)
/ Ll V V

where n is the numbei of ion pairs per unit cell and e is the

polarizability. The first term in (2) represents the contribution of the

ion pair when the lattice vibrates, and the second term is the electronic

polarization of the ions due to the electric field associated with the

oF~ical modes. The part of the polarization produced by the electron itself

as it moves through the crystal is, however, not included in our

consideration, since the continuum model is not valid for such an effect.
2 3

The local field in (2) is related, in the long-wavelength limit, to the

polarization by

E(r,t) - EI(rt) + 41r dr ' F(r-r').P(r') (3a)

where

4r
E 2(r,t) = 3 P(r,t) (3b)

and F denotes the Green tensor with components

L.. I a i (3c)ao 4 waxaxf j-7' I

The equation of motion for the polarization then follows by plugging

Eqs. (2) and (3) into (1):



"" n e*"

1 n P(r, t) + w - 41r(a n ew3 i L oLI LIL 01 ov

4anf r d)

n e .2

2I V OJ'+ /
+ 4 7r ( a V n V wO + f d r (7 ) . ( ( 4)

The time-dependent part of thI polarization can be separated by assuming

P(r,t) = P(r)e i W t which, after substituting into (4), yields the equation

for P(r),

I -x o/ 47r
LI ( - ) 3 P(r) - 4 dr' r(r-r')-P(r') (5a)

I/ n.. (A -A )-l f

where we have defined the parameters

A2 412/W2 (5b)V pv

A2  I&WW 2 /W 2  (5c)o0 o - pI/

22/
with the ion plasma frequency w 41rn e* 2

Since the translational invariance in the z-directio% is destroyed by

the interfaces, we introduce the two-dimensional vectors Z and p so that k -

(K,q) and r - (p,z). The two-dimensional Fourier transforms can now be

written as



P(r) _ (1 )2 -d e i  
.

' IC,:) (6)

r =21r dn exp(L'c._p-rczj) (7)

Differentiating (7) twice with respect to the coordinates, we obtain

4 d- e KK/2xr (8)

where

K- (K, ie(z)x) , (9)

with the step tunction 8(z) - ±1 for z < 0. Substituting (6) and (8) into

(5a), and moving the term -P from the right-hand side to the left, we canz

wrie afceL 4ore. 6ebla Lhe LesulLillg equat.ioh Ii, a L.ioe symmetric form as

4F 0 xv (W) 1 k PC,

0 0 x (w) (W)

-2w (z ')- (

2 K C dz'e • z )(10)

where XV(w) is defined by

4x-() V ov 4 (11)
(A -A O) 1 3



it turns out that y (w) is the isotropic dielectric susceptibility and is

related to the dielectric function by (w) - c - i wiLh
V

2 2
e ( ) ' , l12a)w =w 2 2

Tv

- 4rwan /(l -47 n (12b)
VL wV 3 vw

where we have defined the LO and TO phonon frequencies

2 2 2 2 813a)wL - w o  + w ,p(Il+ -3an) 1a
Lw1 ow/ 3 pv 3 1/V

2 2 -I 2 P1 (13b)2 "( - -- 3b

Tv ov 3 pL/  3 VnV

Since the interface phonons propagate in the xy-plane, it is more

convenient to express the polarization vector as P = (;,P where ; is a

two-dimensional vector defined by ir - (P ,P). Thus

P(.,z) - P (X,z) + P (#,z)£ + Ps(t,z) , (14)

where the unit vector 9 is defined by - i . Substituting (14) in (10),

we can separate the s-component and decouple (10) into two equations:

] i(i,z) - f dz'M(z-z').w(c,z') (15a)0) 4w -c

0 X_ 1ME (W



for the s --alled p-polarization, and

,.)P ',z) = (15b)
-, S

.or :he s-polarization, where M is a Hermitian matrix given bv

1 i@(z-z'~

'C I I
M(z-z') - M'(z'-z) = -2?rie -  CZz . (16)

As we shall show in the following sections, Eq. (15a) defines an

eigenvalue problem whose solutions describe the interface modes and the

cnrTifined modp- Equation (15b) describes the s-polarization, which is not

of concern in the present paper. The eigenvectors ir(rc,z) form a complete

orthonormal set. Here we just give without proof the orthonormality

relation

- dz 2 7t - 6 .. , (17)

pv

with 7'o(w) - 1/[I + a n (A - )]. The completeness relation is given by

2

I 6(z-z')(

'LI



for the so-called p-polarization, and

)-1, 
(1b

x (W)P (cz) = 0 (15b)LIS

For the s-polarization, where M is a Hermitian matrix given by

I ~ iE(z-z')

+ Iz-z'I
M(Z-z') - M(z' z = -27rce (16)

L ie(z-z') -i

As we shall show in the following sections, Eq. (15a) defines an

eigenvalue problem whose solutions describe the interface modts and the

confined modes. Equation (15b) describes the s-polarization, which is not

of concern in the present paper. The eigenvectors ir(rc,z) form a complete

orthonormal set. Here we just give without proof the orthonormality

relation

Idz 2ri) (. r z) 7i(P z) = 6.j (17)dz2 1 ..

pu

with 17Go.) - i/[l + a n (l o -
' J. The completeness relation is given by

V V VII OL' W

2

( ,z) (Kz') - P I 6(z-z') (18)
i V
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where I stands for the unit matrix. Finally, we note that the polarization

vector must be real, and consequently

)= P*(-,,z) (19)

Similarly, we have

( ,) = *(- ,z)(19b)

0

III. Interface Modes

It is easier to solve the coupled integral equations (15a) by first

transforming them into differential equations. This can be done by

differentiating (15a) with respect to z twice and at the same time requiring

X 1() 0

det #0 (20)

0 Xl MOE (W)

The resulting equations are

d -4
d_ (r, z) - ix P (PC,z) (21a)dzc" z

d2

d 2 - 2--
- r(x,z) - K r(xz) (21b)dz 2



I!I

The solutions to (21) take the form

A 2e Pz<0

P (Z,z) = i(AIez -BIz) 0 < z < a (22a)

-iB2e - z  z>a

A~ /C 0

Ae z<0

Pz(+,z) - AIe B e  0 < z < a (22b)

Be~Z z>a

Substituting (22) in the integral equation (15a) , one obtains a set of

homogeneous equations for the amplitudes A and B of the p-polarization.

The condition for the existence of a nontrivial solution then leads to the

dispersion relation

= ±e1 a  

(23)SI (W)+ 2 (W)

The + and - signs on the right-hand side of (23) correspond to the symmetric

and antisymmetric modes of the interface phonons, respectively. The

polarization amplitudes are found to satisfy the following relations:

+ + + + - a

B1/A - B 2/A - + e (24a)

+ X2 (w)

A __-__ (c) (l )A (24b)



12

+ X2 (W) _e a ) +

B2 - ) a B (24c)

Equations (24) are equivalent to the boundary conditions that the wave

functions have to satisfy at the interfaces. Thus the differential

equations (21) yield naturally the correct boundary conditions after

substituting their solutions (22) into the integral equation (15a). On the

contrary, the hydrodynamic terms introduced in Ref. 23 are inconsistent with

the boundary conditions. Combining Eqs. (22)-(24), we find the eigenvectors

for the antisymmetric interface phonon modes to be

Ca ()1 l 2 1 eZ (-i,-) sinh(,-) , z < 0
2 . .Ia Ca[ a 1 )- <2_(2a

- GE!i sinh(r(z-t)f, cosh(rc(z-a/2))] 0 < z < a (25a)

C 2 -(z -a ) . a
Cale 1 )- l e (i,-l) sinh( 2 ) , z > a

and for the symmetric modes to be

CI ( )l e1z (i,l) cosh(y) z < 0

SCs[i cosh(n(z-a/2)), sinh(x(z-a/2))] 0 < z < a (25b)

C "2 (W)l -r(z-a) xa

I()I e (i,-l). cosh() z > a

where, according to (17), the normalization constants are given by

C - X /I [1._ 2 EI(2)2] (25c)
a,s sinha) 2 2 e2 X1'4p2

- -• , , p '0 p2 I|
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A heterostructure composed of two media with dielectric functions

given by (12) always supports four distinct interface modes of vibrations,

two from each medium. The dispersion relations for these modes can then be

calculated explicitly from (12) and (23). The results are

W + w2 +W2 +E W2 +W2 c (S

a f->2(TI+L2)  I T2+"LI ) coth(y)

2 2 2 2 2 2 2 2 coth2(sa+ { (TI- L2 + % I(T2-L c 2

2 2 2 2

2E. E, Ti-r +W)(W22 2 L2 hT2+ LIl

- 2(2 2 W2l 22 )]a c )/(t '"/n(2 coth(y)1) (26a)

+ f 2 2 2 2

s " a2(TI+L2) + EI( T2+'Ll tanh(y)

2 (2 2 2 2 2 2 2 tanh2(na
! 2 TI-L2) + (wT2 tla

1l 2  Ti L2 2 )

2 2 2[ 2 ( a na 1- 2 2 2 2 . tanh(y))1"/( 2 [ tanh(y)2 (26b)

It is seen from (26) that the interface phonon energies depend explicitly

on the dimensionless quantity Ka.

Let us now look at the limiting cases. When a - c, tanh(-) - I and

coth(-)- 1. Therefore, both (26a) and (26b) approach the same limit,

given by



+ 2 2 2 2
--t l(Ll+wT 2 ) + %,2(WTl+ L2)

2 2 2 2 2 2 2 )2-1 L I( L -T2 ) + C. 2 (WL2- WTI)

22  2 2 2 2 2 22 

1i I2[TI +WL2)(WT2e )Ll) 2 (wT2 LlTI L2)]1

x [2( 1 + 2)] , (27)

which is identical to the result of a bilayer system with only one

19
interface, as it should. In the limit a - 0, the system reduces to a bulk

material 2 with frequencies WL2 and T2 When x - 0, tanh(L) 0 and

Ta
coth(-) + . We then find from (26) that

+ - 2 2 + (2 2 (28a)
a J[WT2+Li - T2-Ll)]/2 LiT2' Ll

+ 2r+~ ± ( 2  2 w~±- - [ 2 + 2 + ( W2 -W2 ) / 2 - ) W( 2 8 b )
s TI+L2 - T L2) TI' L2

that is, the limiting frequencies are given by the bulk LO and TO

frequencies of the two materials. It may be worth mentioning yet another

limit at this point. When the characteristic parameters of the two

dielectrics approach each other, or when c 1  C 2' we find for a given width

that the amplitudes of the interface modes of vibration diminish

continuously and become zero at 1 - f2'

The interface phonon modes have no connection with bulk polarization

charges because V.P - 0. They are accompanied by the surface charges a

at the interfaces. These charge densities can easily be determined by
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calculating the difference of the polarization eigenvectors in the z-

direction on both sides of the interface concerned. Thus we find from the

z-components of x sa in (25)

{!%l z=O

Gs  {Is, at (29a)
s z- a

for the symmetric mode and

at (29b)
a 1Cal z=a

for the antisymmetric mode, where

Ia I- ;i ( a)" x1 sinh(y) + x2 cosh()

sC X 2 X2 2 (30a)

2 + - coth(y)

X, cosh(~ 2c sica t

- 1 2 ) + X2 s (30b)

Xsin"l )] X2+ 7 tanh(y)
[w-2 + 2 2c

p i p2

IV. Confined bulk LO and TO modes

For the LO modes, w - wL , and from (12a) we have c (c ) - 0 and

(W ) '0 for v' $v. Thus D - 0 in layer v, andE - P/c ' The

differential equations satisfied by the polarization field associated with

the longitudinal phonon modes follow from (15a). In layer v we have



i6

d L
dz p  (K,z) ir PL (/C,z) (31a)

and in layer V

d 2 P L (,z) K2 L (C,z) (31b)dz 2 K z

The solution to (31b) has the same form as (22) with the coefficients

determined by the boundary conditions for the field vectors. In layer v, D

0, and E - - P/C From the continuity of D across the interface, we have

= 0 in layer v'. Since E ; 0, we must have E = 0 and P = 0. Therefore

(31b) has a solution that is identically zero everywhere in the laver V.

The boundary conditions in layer v can be found from (15a) for E V 0 and Xn

- -I. After some algebra, we find from the coupled equations that

Pt(a) - PL(0) = 0 (32)

Hence, Eq. (31a) is satisfied in layer I by the eigenvectors

m-( C a i sin( z), Cos (z)] 0 < z < z (33a)

0 z>a

where m is an integer, and in layer 2 by



17

C L[i sin (qz), q cos (qz)] z < 0

;L 0 0 < z < a (33b)

q

cL i sin q(z-a), _ cos q(z-aY z > aqK

where q is real, with the corresponding elgenfrequencies wLl and wL2'

respectively. These modes are highly degenerate vibrations. We remark that

the dispersionless nature of the confined bulk modes is consistent with the

long-wavelength limit which is implied in the continuum model. The bulk

optical photons have constant energy as k - 0.

Equations (33) clearly show that the longitudinal optical phonons are

completely confined by the interfaces. In the central layer (labeled 1),

the confinement leads to the quantization q - mr/a, where m = 0, ±1, ±2 .....

while in the semi-infinite side layers (labeled 2), the wave number q

remains continuous. The state vectors are normalized according to (17) with

the normalization constants given by

C ) -C L  _L2 2 (34a)
m a € -I a + m2 2/a 2

CL _L2 1 K_(34b)
Gq~ " 2;2 + (34b)

The confined LO phonons are related to both bulk polarization charges

and interface polarization charge. The former can be found from p - V.P

and the latter follows from tne boundary conditions at the interfaces. The

results are



18

L 2(3b

pq - C (r + q 2/n) sin(qz) (35b)q q

CL _.m r f(-I) at z = 0(3aa =C -[at Z3a

m m a. (-l)m z = a

C -q z 0
q =

L
a - at (36b)

-C -q z - a
q i

We now turn our attention to the TO phonons for which w = wT"

Equation (12a) then implies that (W 0 and 0 for v' * v.

Hence E - 0 and D - P in layer v. The same consideration and procedures as

described above for the LO phonons lead to eigenfrequencies wTI and wT2 with

corresponding eigenvectors

n [im cos( z) sin( Z)] 0 < z < a (37a)m m ax a a

0 z > a

where m is an integer, and

cT[iq cos(qz), sin(qz)] , z < 0q

XT 0 0 < z < a (37b)

cT iq cos q(z-a), sin q(z-a)] z > aq r

where q is a real number. We see from (37) that the TO phonons are also

strictly confined by the presence of interfaces. Once more, these



L 9

eigenvectori are normalized according to (17), and the normalization

,;onstants are given by the same expressions as (34) except for the

replacement of wLL by T/V The confined TO modes are, however, not

associated with any polarization charge, neither bulk nor surface charge.

The s-polarization modes are given by the solution of (15b) with

-i
x (w) - 0. This implies that the s-polarization modes exist only when the

eigenfrequencies are those of the transverse optical phonons in either

medium. Since these modes are completely decoupled from the other

vibrational modes, they are nct involved in the interaction with electrons

And henc- will p,,tr )7- ,scussed f,,rther.

V. Discussion

We have shown that there exist two types of phonon moces in a double

heterostructure consisting of two semiconducting materials, the interface

phonons and the confined bulk phonons. The interface modes may be either

symmetric or antisymmetric with respect to the center of the system. They

are dispersive in nature, and their frequencies for gi-.en materials depend

solely upon thc dimensionless quantity xa. In the center region of the

Brillouin zone, these modes have the same frequencies as those of the bulk

LO and TO phonons in each material. For this reason, we shall refer to them

as "LO-like" and "TO-like" interface phonons.

Since the bulk frequencies are determined by the positions of the

zeroes and poles of the dielectric functions as can be seen from (12),

different compositions of the double heterostructure can result in different

freqi-r.=y combinations. However, only three distinct combinations As shown

in Fig. 2 are possible, where we have assumed wT2 > WT1 without loss of

generality. It is observed that as the width of the central layer



increases, the four interface modes become two degenerate modes. In the

limit of large a, these modes have the same frequencies as those in a

bilaver heterostructure. In case (a), the degenerate modes are material-

like, while in the other two cases they are LO-like and TO-like.

Experimentally, only case (a) has been observed thus far. It is therefore

interesting to carry out experiments on samples with wLI, WL 2 > WTl,'WT 2, such

as GaAs/Ga A2 As (GaAs-type) and InP/AlSb.
0.3 0.7

It should also be of great interest to note that the peculiar mode

27
observed in the 90' Raman scattering experiment may be understood, as has

28
been pointed out in a recent communication, in terms of the interface

modes derived in Sec. III. In other words, the novel slab modes reported in

Ref. 27 are in fact the interface modes. A detailed analysis of this

experiment will be published elsewhere, and here we give only a qualitative

account. Since Raman scattering experiments involve only phonons of very

small , the dominant component of the polarization vector r is Pa z

according the (25a). Therefore the antisymmetric interface modes are

predominantly TO modes. Tn the central layer, this TO mode oscillates at

the LO frequency of GaAs, in agreement with the experimental result in the

right-angle scattering configuration. Similarly, (25b) shows that the

polarization r has a dominant P component, or the symmetric interface mode

in the central layer is predominantly longitudinal and oscillates at the

bulk TO frequency of GaAs.

In addition to the Raman scattering experiments, the interesting

pinning phenomenon has been reported in recent measurements of cyclotron

resonance. That the electron interacts with optical phonons at the bulk TO

frequency has been observed in the measurements of the magnetopolaron

29-31frequency in semiconductor quantum wells, and it has been attributed to



29
the classical dielectric effect. This is essentially a polariton effect

rather than a polaronic one. Then th= ls-2p trinsition energy of a

hydrogenic impurity atom in a GaAs quantum well is measured in strong

31 -l
magnetic fields, The pinning is found at a frequency about 40 cm below

-i
$L ( - 20 cm below wT ) . To our knowledge, there is no theory up to the

32
present time that can account for this result. The existence of traveling

LO phonons and the zone-folding effect has been suggested as a possible

1

source of this phenomenon. 1 We have solved the interface phonon modes in a

superlattice, and our oreliminarv results indicate that probably the

interface modes are responsible for this strange pinring phenomenon. More

careful study is necessary, however, before any definite conclusion can be

made. Work along this direction is also underway and will be discussed in

forthcoming publications.
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Figure Captions

i. Geometry of the double heterostructure.

2. Dispersion relations of the interface modes in the aouble

heterostructm-e for different compositions: (a) GaAs/A2As for which L2

> T2 > LI > TI (b) GaAs/A 0.3Ca 0.7As (GaAs-type) for which wL 2 > LI

> WT2 > UTI' (c) InP/AISb for which wLI > WL 2 > WT2 > WTI"
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